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Abstract 

The second representation of a triplet invariant 
[Giacovazzo (1977). Acta Cryst. A33, 933-944] is a 
collection of special quintets. In the present paper, 
the triplet is embedded in many more additional 
quintets obtained in a special way by symmetry 
operations on the indices of the structure factors. 
The method of joint probability distribution func- 
tions has been used to derive a formula for estimat- 
ing triplets via the information contained in the basis 
and in the cross terms of the quintet invariants. 
The P10 formula [Cascarano, Giacovazzo, Camalli, 
Spagna, Burla, Nunzi & Polidori (1984). Acta Cryst. 
A40, 278-283] is a special case of the new formula, 
here called P~3. The new expression has been applied 
to practical cases. 

Symbols and abbreviations 

C - ( R , T )  Symmetry operator. R is the 
rotation component, T is the 
translation component. 

Eh = Rhl exp (i~0h) Normalized structure factor. 

43 = ~Oh, + ~0h2 + ~0h3 With hi + h2 + h3 = 0. 

© 1994 International Union of Crystallography 
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m 
N 

Dl(x) = Ij(x)/Io(x) 

Number of symmetry operators. 
Number of atoms in the 
prihaitive unit cell. 
Ratio of the two modified Bessel 
functions of order 1 and 0, 
respectively. 

Introduction 

In accordance with Giacovazzo (1977), the second 
representation {~}2 of the triplet phase invariant q~3 
is the collection of special quintets 

~2 - ~3 + ~kR,-- ~kR,, i = 1,....,m, (1) 

where k is a free vector in reciprocal space. The 
collection of the basis and cross magnitudes of the 
various quintets ~b2 is called the second phasing shell 
of 43: 

{B}2 = {Rh,,Rh2,Rh3,Rk,Rh,+__kR,,Rh2+kR,,Rh3+_kR,}, 

i=  1,...,m. 

A formula was derived (Cascarano, Giacovazzo, 
Camalli, Spagna, Burla, Nunzi & Polidori, 1984) that 
can be used to estimate q~3 given the moduli in {B}2: 

P(tP3I{B}2) "" [27rlo(G)]-lexp(Gcos @3), 
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772 PROBABILISTIC ESTIMATION OF TRIPLET INVARIANTS 

where 

G=C(I  +Q) 

C = 2Rh]Rh2Rh3/N 1/2 

k I m 1 ~'  Ak, i /N 
Q _. i=l 

1 + (eh, eh:h3 + ~ '  Bk,~)/2N 
i=l 

Ak, i = ek[eh, +kR/(Eh2-kR~ "[- Eh3_kR ) 

"~ Eh 2 + k R , ( E h ,  - kRi  "[- Eh 3 - k R )  

+ 6% + kR,(eh, - kR, + 6h2 - k R ) ]  

B k , i - -  E h , E E k ( E h ,  + k R / " ~ "  Eh, - k R )  

+ Eh 2 + kRiEh3 - kR,  "~ Eh 2 - kRiEh3 + kR  i] 

a t- Eh2[Ek(Eh2+kR,-[- E h 2 _ k R  ) 

-~- Eh I + kRiEh3 - k R  i + Eh 1 - kRfih 3 + kR,] 

-]- Eh3[ Ek( Eh3 + kRi'a t" E h 3 - k R  ;) 

+ Ch I + kRiEh2 -- k R  i "at" Eh I - kR~Ch2 + kR~]" 

The prime to the summation warns the reader that 
precautions have to be taken to avoid duplication of 
contributions. The denominator of Q is never 
allowed to be less than unity. Furthermore, e is 
assumed to be zero for nonmeasured reflections (this 
corresponds to the less-biased assumption of R = 1). 
As a consequence of the space-group algebra, 
systematically absent reflections do not provide any 
contribution to the formula (the practice in the 
applications is to assume e=0 for these reflections 
also). 

The distribution P(~3]{B}2) was denoted P10 in 
order to emphasize the fact that the formula explores 
reciprocal space by means of a ten-node figure. G 
may be positive or negative: if G < 0, the triplet phase 
is estimated close to rr. Long experience with SIR88 
(Burla, Camalli, Cascarano, Giacovazzo, Polidori, 
Spagna & Viterbo, 1989) and SIR92 (Altomare, 
Cascarano, Giacovazzo, Guagliardi, Burla, Polidori 
& Camalli, 1994), two packages for direct phasing of 
crystal structures, proved that: 

(a) a limited number of k vectors, chosen among 
the largest R values, are sufficient for accurate esti- 
mates of ~3; 

(b) P~o is much more efficient than the Cochran 
(1955) formula, its use often making the difference 
between success and failure. 

The basic reason for the success of P~o may be 
described in the following way. For any k vector, the 

6m cross magnitudes of • are 

Rh, + kR,,Rh, - kIt,,Rh2 + kR, ,Rh 2 - kR, ,Rh 3 + kR,,Rh3 - kit, 

Rh, + kR2,Rh, - kR2,Rh2 + kR2,Rh2 - kR2,Rh3 + kR2,Rh 3 - kR 2 

: (2) 

Rh~ + kR~,Rh, - k R m , R h 2  + kRm, R h 2  - k R m , R h  3 + kRm, 'Rh3  -- kR~"  

From the magnitudes in the ith line of (2), six 
quadrupoles arise: 

('Ph, "~- ~ h  2 -~  ~Oh 3 - -  ~Oh, - -  ~:)kRi -I- Cph ' + kR,  

('~h 2 + (~kR~ "~" ~:~h 2 - k R ~ -  ~:~h 3 - -  ~h~  + k R ~ -  (~h 2 - k R ~  

~:)h I "~- (~h 2 "lU (~h 3 - -  ~ h  I - -  ~ ) k a i  "Jr" ~)h 1 + kRi  

- -  (~h 2 - -  (~h I + k R  i - -  ~ h  3 - - k R i -  ~ h  3 "~" (~kR~ "~- (~h 3 - k R ,  

~)hl  ~ ~ h 2 - ~  (~h 3 - -  (~h I -4- ( # k R i ' 3  U ~ h  I - - k R i  

- -  (~h 2 - -  (~kR~ "~- ~)h 2 + kRi  - -  ~ h  3 - -  ~ h  1 - kRi  - -  ~ h  2 + kRi  ( 3 )  

(~h 1 -3 t" ~:~h2-3 t" (~h 3 - -  ~ : ) h t -  ~Dh2+ k R i -  ~ h 3 _ k a  ~ 

- -  ~ h  2 - -  (~kR~ "t- (~h 2 + k R  i - -  ~:::~h3 "a t- ~::~kR i "a t- ~ )h3_  kR~ 

~ h  I "~- (~h 2 "3 U ~Dh3 - -  ~ h  I + (~kRi  "3 t- ~ h  I - k S  i 

- -  ~ h  2 - -  ~ h  I - k R ~ - -  (~h3 + k R  i - -  ~ h  3 - -  (~kR~ "3U (~h3 + k R  i 

(~h I "~- ~ h  2 + ~ h  3 - -  ~ : ~ h l -  ( ~ h 2 _  k R  ~ - -  (,~h3 + k R  i 

- -  ~)h 2 + ~:)kR i "~- ~)h 2 - kR~ - -  ~Dh 3 - -  (~kg/"3t- (~h 3 + k S / ,  

each of which gives a recognizable contribution to 
P~o. The Plo formula is an efficient way of simultane- 
ously exploiting the information contained in a quite 
large number of quadrupoles. The question is now 
whether (3) are the only quadrupoles exploitable via 
the second representation of q~3. Other types of 
quadrupoles do exist; for example, 

(~h, "~- @h 2 + @h 3 - -  (Ph 2 - -  @kR,  "3U ~)h 2 + kR,  

- -  (~h 3 + ~0kRj "3t- ~:~h 3 - - k R :  

- -  ~ h  I - -  ~:~(h 2 + kR~)Rp - -  (~(h 3 -- kRj )R s (4) 
is also a quadrupole, provided 

hi + h2Rp + h3Rs + kRiRp- kR:Rs = 0. 

Quadrupole (4) is structurally different from quad- 
rupoles (3) because it involves magnitudes contained 
in two lines of (2) and also because the sum of the 
four triplets in (4) is no longer strictly equal to zero. 
In the paper by Cascarano, Giacovazzo, Camalli, 
Spagna, Burla, Nunzi & Polidori (1984), quadrupoles 
like (3) were called type I, quadrupoles like (4) type 
II. If the sum D of the four triplet phases in (4) is 
calculated, one obtains 

D= 2rr[h2Tp + h3Ts + k(T;-  Tj + R;Tp- RjT~)]. 

When D=0,  the quadrupole is called consistent 
(Viterbo & Woolfson, 1973); it is inconsistent in the 
other cases. Since quadrupoles (3) are all consistent, 
Pt0 cannot exploit any inconsistent quadrupole. It is 
therefore of some interest to understand if some 
quintets exist that are referred to quadrupoles (4) 
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and then to introduce a formalism able to involve 
such quintets. Then, quadrupoles of types I and II 
could be simultaneously exploited. This is the first 
aim of this paper. 

Algebraic  cons iderat ions  

Let 

~-/2 = ~h ,Rp  "3U ~h2R q "3t" ~ h  3 "31- ~ k R i -  ~ k R j ,  ( 5 )  

where ht, he, h3 and k are chosen so as to satisfy the 
condition 

hlRp+hERq+h3+k(R~-R/)=O. (6) 

The quintet (5) differs from ~3 by a known phase 
shift: 

~E = tP3 -- 2'rr[hlTp +hETq+k(Ti-Tj)].  

Therefore, any method estimating ~//2 also provides 
an estimate of ~3. Finding for each set of four 
vectors h~, hE, ha and k all the combinations of four 
matrices Rp, Rq, Ri and R i for which (6) is satisfied is 
too long a job, even for fast computers. Thus, we 
prefer to limit our study to three subsets of quintets 
(5); more precisely, to the following cases: 

Case I 

{~h,Rp "~ ~h2 "]- ~Dh3 "]- (~kRi-- ~DkRiRp} (7) 
under the condition 

(h, - k R ~ ) ( R p -  I ) : 0 .  (8) 

Case II 

{~Oht "[" ~h2R p "3 t- ~ h  3 "3 L ~ k R l -  (~kRiRp } ( 9 )  

under the condition 

(hE- kR,)(Rp- I) = 0. (10) 

Case III 

{ ~ h ,  -~- ~ h  2 "Jv ~0h3Rv "~- ~ k R , -  ~kRiRv } ( 1 1 )  

under the condition 

(h3-  kR~)(Rp- I) = 0. (12) 

For each set of four vectors h~, hE, h3 and k, we 
need now to identify only the two matrices Rp and Ri 
that satisfy (8), (10) or (12). Since the three cases 
have similar properties, we focus our attention on 
case I: results are then easily extended to cases II and 
III. 

Let us consider for case I the generic quintet (7). 
Its phasing shell consists of the following 13 
magnitudes: 

{Rh t, R h  2, R h  3, R k ,  R h , R , , + k R i ,  R h , - k R , ,  R h 2 + k R  ~, 

Rh2--kR~R,,,  Rh3+kR~ ,  R h 3 - - k R i R  p, R h ~ R v + h  2, Rh~fRp--l)--h2, 
RkR~(Rp_ 1) } . (13) 

In accordance with (8), the vector kR, (Rp-I )  can be 
rewritten as h~(Rp-I). This notation emphasizes the 
fact that, when k varies over reciprocal space and p is 
kept constant, kRi(Rp-I )  remains constant. There- 
fore, the last three terms in (13) depend only on h~, 
h2, h3 and Rp. 

When Rp=I ,  the 13 magnitudes reduce to ten, 
which constitute the second phasing shell of ~3 (i.e. 
the set {B}2). Accordingly, the formulation used for 
deriving the Pm expression is a particular case of the 
theory described here. 

It should be noted that, because of (8), hi - kRi is a 
special reflection marked by a Wilson coefficient 
~7 ~e 1 [i.e. ~7 rotation matrices exist for which (h~-  
kRi)Rp = hi - kRi].* According to (7), the phase shift 
between I//2 and (I)3 reduces to d = 27r(h~-kRi)Tp; 
therefore, A;~0 only if (h~-kRg) is a systematic 
absence, otherwise A = 0. 

We also note that equation (8) may be written as 

h~Rp + kR;= h~ + kR~Rp. (14) 

If Cp represents a symmetry operator of order 2, then 
(h~Rp + kR~) is also a special reflection with r/;e 1. 
Indeed, 

h~Rp + kR/=  (hi + kRiR~- 1)Rp = (hi + kRiRp)R? 

and, according to (14), 

(hi + kR~Rp)Rp = hi + kR~Rp for Rp ~e I. 

We conclude that at least one cross reflection of the 
quintets (7) is always special; when it coincides with 
a systematic absence, the phase shift between ~b2 and 
qb 3 is different from zero. 

Quintet (7) exploits the following 14 quadrupoles 
[for simplicity we often denote h l (Rp- I )  - h2 = hlRp 
-I- h3]: 

(a) q:'h, -Jr" ~ h  2 -'l- (~h 3 - -  (~h I "~ ~0kR ' -Ji- (~h, -- kRi 

- -  (~h 2 - -  ~kR~ "it" (~h 2 + kRi 

- -  (~h 3 - -  ~Dh I - kRi - -  (Ph 2 + kR l 

( b )  ~ h  I "l- ~h2  -'1- ~Dh3-- (~h I "Jf" (.PkRl '-~- ~0hl _ k R  ~ 

- -  (mh 2 - -  ~0h I - k R , - -  ~:~h3+kR ~ 

- -  (~0h 3 - -  ('~kR/'J¢- ('Ph 3 + kRi 

(C)  ~:~hl "l- ~ h  2 "~ (ph 3 - -  ~Ohl "1L (PhlR p - -  (.phl(Rp -- I) 

- -  (~h 2 - -  ~ h t R  p + (~h lRp+h  2 

- -  (~0h3- ~DhiRp+ h 2 "1 t" ~ h l ( R p _  i) 

( d )  ~ h !  "{- (Ph2 "~- ~/)h 3 - -  ~ h  l "3t- (~hlR p - -  ( ~ h l ( R o - l )  

- -  ~0h2-- ~ h l R p + h  3 "3 t- ~Dhl(Rp_ i) 

- -  (~h 3 - -  ~/~hjRv .-~- (.f)hiRv+ h 3 

(e) ~ h  I "31- ~ h  2 "JI- ~)h3 - -  ~DhlRp - -  ~ h  3 "3 I- ~.PhlRp + h3 

- -  ~0h2 '-I- ~ k n i n p  -at- ~:~h 2 - kniRp 

- -  ~ k R i - -  ~Ph2-kRiR p - -  ~0hiRp+h 3 

* In the literature, the Wilson coefficient is usually called e or p. 
Here, it is called r/to avoid a conflict with other symbols. 



774 PROBABILISTIC ESTIMATION OF TRIPLET INVARIANTS 

(f) @h I "~ ~)h2 -~ ~/)h 3 - -  @ h , R p -  ~Dh 3 "~ ~ h , R p + h  3 

_ _  ~t~h 2 __ ~t~kRi 3¢ @h 2 + kR, 

-~- ~ k R ~ R p -  ~Dh2 + kS i - -  ~DhlRp +h  3 

(g) 

(h) 

(i) 

@h, "3t- ~Dh 2 "~ ~Dh 3 - -  ~t)h,Rp-- @kRi "~" ~0h,Rp+kRi 

- -  ~Dh 2 "{- ~DkRiRp "4- ~0h 2 -- kR,Rp 

- -  @h 3 - -  ~DhtR p + k R i -  ~ h  2 -kRiRa 

~/)h, + ~ h  2 "~ ~ h  3 - -  ~ h , R a -  ~kR,  + ~0h,Rp + kR, 

- -  ~Dh 2 - -  ~ h t R p + k R , - -  ~ h 3 -  kRiR p 

- -  ~ h  3 ~- ~DkRiR p 3ff ~ h  3 _ kRiRp 

@h, "~- ~0h 2 "~- ~/)h 3 - -  ~ ) h , R p -  ~)h 2 "3L ~Dh,Rp+ h2 

"31- ~/~kRiRp - -  ~Dh 3 + kRi - -  ~h,Ro + h 2 

- -  ~Dh 3 - -  ~)kRi "~- ~ h  3 + kR i 

(15) 

(~ 

(z) 

~/3h, + ~ h  2 "~ ~Dh 3 - -  ~ h ~ R p -  ~Dh 2 "l- @htRp+ h2 

- -  @kRi - -  ~0h 3 - kRiRp - -  @h,Rp + h 2 

- -  ~Dh3 "3 U ~kRiRp "~ ~Dh3 - kRiR p 

~/~h t "~- ~Dh 2 -[" @h 3 - -  ~ h , R p -  @h2+ kR i - -  ~/3h3- kRiR p 

- -  @ h  2 - -  ~ k R ,  ~ l -  ~ 0 h 2  + kR, 

- -  ~/~h 3 "~ ~kSiRp "~ ~ h  3 - kRiRp 

@h, "~ ~0h 2 "~ ~t~h 3 - -  @ h , R p -  ~0h2- kRiR p - -  ~t~h3 +kR  i 

- -  @h 2 "{- ~/~kRiRp + @h 2 -- kRiR~ 

- -  ~Dh3 - -  ~kRi  "3 t- ~ h  3 + kS  i 

(m) ~Dh, "~" ~ h  2 "~- ~/)h 3 - -  ~/~kR/"~ ~/3kRiRp - -  ~kR,(Rp - I) 

- -  ~/~hlRp - -  ~ h  2 "4- ~Dh,Rp+h 2 

_ _  ~Dh3_ ~hlRp+h2 3ff ~h t (Rp_ i ) 

(n) ~ h  I + ~ h  2 + ~Dh 3 - -  ~)ldR i + ~kRiRp - -  ~kR~(Rp - 1) 

- -  ~/~h,Rp-- ~Dh 3 "3t- ~t~h,Rp+h3 

- -  ~ h  2 - -  ~hlRp+h3 "~- ~ h l ( R r _  I). 

The reader will easily verify that (15) has some 
quadrupoles in common with (3). Such an overlap 
will be reflected in the probabilistic formula estimat- 
ing triplets i, ia 13 moduli, which will therefore have 
terms in common with Plo. 

The conditional probabilistic formula 
P(~31Rh:...,Rh,fR,,-I)) 

Let us consider the quintet (case I of  the preceding 
section) 

~0h,Rp -[- ~/)h 2 "~- ~0h 3 "~- ~/)kRi- @kRiR p" (16) 
The method of  joint probability distribution func- 
tions of  structure factors (Hauptman & Karle, 1953; 
Klug, 1958; Giacovazzo, 1980) is used to derive the 
conditional probability 

P(tP3 Rh: Rh: Rh 3, Rk, RhlRp+kR i, Rht-kR ,, Rh2+kR ,, 

R h 2 - k R , R  p, R h 3 + k R :  R h 3 - k R i R  p, R h l R p + h  2, R h l R p + h  3, 

Rh,(Rp - I))" 

under the condition (8). 
For the sake of  simplicity, we do not give any 

detail about the mathematical derivation. We only 

underline that k is a free vector that can vary over 
reciprocal space and that Ri is a rotation matrix that 
can vary freely over the set of  rotation matrices 
included in the space group. Once the vector kRi and 
the matrix Rp satisfy (8), then the conditional prob- 
ability of  ~3 given 13 magnitudes is calculated. Con- 
tributions arising from different k and different Ri 
can be combined with each other to give the general 
formula 

where 

P ( ~ 3 [ . . . ) = [ 2 7 r l o ( G ' ) ] - l e x p ( G  ' cos¢'3), (17) 

G'=C(I+Q') 

Q t ~ i= 1 

1 + ~,e~eh3 + ~'.' B~,~ / 2 N  
i=1 

p = l  

+ eh,R, + kR,(eh~ - kR,.R, + eh~ _ kR,S) 
+ eh,R,+h~(eh~+~,+ eh3-kR,R) 

+ eh,R,+h~(eh~+kR,+ e~-kR,R) 

+ eh~ + kR,eh~ - kR,.R, + eh~ + kS,eh~ - kR,R~] 

-I- I ( E  k - -  2)Eh,(R _ l)(EhtRp+h2 q- Eh,Rp+ h3)} c o s A  

1 
-I t- 2[(Eh,- 2)Eht(Rp_ i)(Eh,Rp + h2 "[- Eh,R, +h 3) 

A = 27r(h, - kR,)T? 

B~,i--"  ~ '{Eh,[Ek(Eh,R,+kR, "3U Eht--kR/) 
p=I 

d- eh2 + kRfih 3 _ kRiRp "~" Eh 2 - kR,RpEh 3 + kR, 

"~ ~h2~hlRp+h2 "~ Eh3EhlRp+h3] 

+ eh2[ ek (eh  2 + kR, -F eh2 _ ka,.R,) -I- eh,Rp + kR,Eh 3 -.kRiR" 

• 3 t- E h l -  kRiEh3+kRi "~- EhlRp+h3Ehl(Rp-I  )] 

"31- Eh3[Ek(Eh3+kRi'Jf  Eh3_kRiR ) "4- Eh1Rp+kR Eh2_kRiR p 

d- E h _ k R  ' Eh2+kR, -~ Eh,Rp+h 2 Eh,fRp_l)  ] 

71- Ek[EhlRp+h3(Eh2+kR -~ Eh2-kR~R ) 

"~ EhlRp+h2(Eh3+kRi '~ Eh3-kRiR) ]}"  

The formula P13 

Let us now consider case II. The quintet (9) may be 
written as 

and depends on the ordered set of  magnitudes 

{ R h  2, R h  t, R h  3, R k ,  Rh2Rp+kR ,, R h 2 - k R :  Rh,  + kR,, 
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Rh,-kR,Rp, Rh3+kR: Rh3-kRiR ,, Rh2Rp+h ,, Rh2Rp+h 3, 

R~,<R,_ ~)}. (18) 
The quintet (11) may be written as 

,[//2 "-" @h3R p + @h 2 + @h, -~- (~0kR,- @kRiRp 

and depends on the ordered set of magnitudes 

{Rh 3, Rh :  Rh I, Rk, Rh3R,+kR ,, Rh3-kR: Rhz+kR: 

Rhz--kRiR p, Rhl +kR i, R h l -  kR;R p, Rh3Rp+h 2, Rh3Rp+h I, 

Rh3(li,- I)}" (1 9) 
The ordered set (13) has its image in the ordered set 
(18) if hi is replaced by hz and vice versa. Accord- 
ingly, the ordered set (19) is the image of the ordered 
set (13) if hi and h3 change their roles. In conclusion, 
the same formula holds for all the cases if the 
positions of the magnitudes in (13), (18) and (19) are 
considered rather than their indices. Then, the final 
formula P13, collecting contributions from different 
cases and from different k's, may be written 

Pl3 = P ( q ° 3 l . . . ) =  [2rrI0(G")] - l  exp (G" cosqO3), 

where 

(20) 

G" = C(I +Q") 

Q"= ~'.' Z '  , i 
m 

cases k 1+ ~,en:h~ + ~'.' B~,,~ /2N 
i= l  

??/ 

A~.,. = Z' [e4(e6e7 + e6e9 + ese8 + eselo + egell 
p = l  

+ el0ell  -t- eTel2 -t- e8e12 -~- e7elo -1- egE9) 

+ l ( e 4 -  2)el 1 el~ + 1(~4- 2)e~:,~] cos zl 

+ ¼(el- 2)el lel3 + ¼(el- 2)elzei3 
m 

B~, i = ~ '  [ e l ( e4e  5 + e4e 6 21- e7elo + egE 9 
p = l  

+ ezell + e3el2) 

+ e2(e4e7 + e4e8 + e5elo + e6E9 + el2el3) 

n t- e3(e4E9 + e4el0 n t- ese8 + e6e7 + el lel3) 

-~- e4(e7el2 -t- ggel2 -1- e9ell  ~- eloell)] .  

The subscripts to e indicate the position of the 
related magnitude in (13), (18) and (19). 

First application of the formula Pl3 

In order to check the practical effectiveness of P13 
for Rp ~ I, we have suitably modified the SIR92 

Table 1. Code name, space group and crystallographic 
and chemical data for the test structures 

Structure code* Space group Molecular formula Z 
AX 118 ~a) Pccn ClgH21 N203C1 8 
AZET Pca2~ C2~ H ~6C1NO 8 
BED 14 Cz6H26N404 8 
BOBBY P2,3 Na + Ca 2 ÷ [N(CH2CO2)3] 3- 4 
CUIMID P3z21 C6HgN4CICu 6 
DIAM P4Jn C,4HzoO 8 
DIOLE l~2d C~oHIsO2 16 
FEGAS ~b~ P6flmmc FezGa2S5 2 
INOS P21/n C6HI206.H20 8 

References: (a) distributed by the crystallographic group in York 
(unpublished). (b) Cascarano, Douggy-Smiri & Nguyen-Huy 
Dung (1987). 

* Complete references for most of the structures are not given, 
for the sake of brevity. The reader is referred to magnetic tapes 
distributed by the crystallographic group in G6ttingen. 

program. Triplets are sought among the NLAR 
reflections with largest R values (NLAR is fixed by 
the program) and estimated according to the 
Cochran (1955) formula, P13 and Plo. The Cochran 
formula 

P(43) --- [27rio(C)] -1 exp (C cos qb3) 

is here denoted P3 for brevity. 
Nine test structures were used for which Table 1 

gives references, space groups and main crystal data. 
The Plo and P13 formulas require that the vector k be 
allowed to vary over a number of reflections. SIR92 
fixed for PI3 the same number of k vectors used for 
P~o; Nk is this value (see Table 2) and (NkR,) is the 
average number of the kR,. vectors involved in the 
quintets (1) exploited for each triplet by P10. For 
algebraic reasons, only a subset of the vectors kRi 
will satisfy (8), (10) or (12); we denote by (N~R)  t he  
average number of quintets of type (7), (9) or (11) 
exploited for each triplet by P13. The relative 
efficiencies of P3 and Pl3 can be deduced from Tables 
3 and 4, where triplet estimates are ranked as a 
function of ARG (ARG = C or G" according to 
circumstances). In Table 3, n is the number of triplets 
with I C] or IG"l larger than ARG; nw is the number 
of wrong estimates. In Table 4, (Iq~) is the average 
absolute deviation of the triplet phase from 27r (in °). 

Tables 3 and 4 show that P13 is an efficient tool 
both for ranking positive triplets and for picking up 
negative ones. It proves to be a formula more accu- 
rate than P3 and therefore may constitute a useful 
alternative to it. In the same tables, we show the 
corresponding statistics obtained for Plo. It is 
immediately seen that P13, calculated for Rp ~ I (i.e. 
Plo contribution excluded), is not better than Plo and 
is highly correlated with it. In order to have a simple 
figure for measuring the relative efficiency of the 
three formulas, we calculated for each structure the 
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Table 2. Parameters for each test structure 

N T R I P  is the number  o f  triplets calculated by S I R 9 2 .  For  the other symbols see the 

Structure code N L A R  N T R I P  Ark (Nka,) (NkR,)  P3 Plo  

AXll8 300 7025 46 156 60 0.200 0.635 
AZET 342 8000 60 186 50 0.156 0.406 
BED 286 4585 64 186 1 0.176 0.282 
BOBBY 68 2217 32 196 21 0.329 0.732 
CUIMID 198 4204 33 120 5 0.224 0.657 
DIAM 260 6455 46 162 41 0.193 0.553 
DIOLE 182 6508 42 230 34 0.179 0.275 
FEGAS 71 1334 30 180 320 0.311 0.773 
INOS 304 3572 56 99 17 0.188 0.660 

main text. 

pl3 
0.503 
0.284 
0.183 
0.427 
0.284 
0.430 
0.212 
0.543 
0.412 

PlO + 13 
0.644 
0.413 
0.281 
0.736 
0.657 
0.571 
0.280 
0.785 
0.656 

P3 
A R G  n n w  

0.4 6823 843 
0.8 2672 143 
1.2 740 13 
1.6 197 0 
2.0 56 0 

Table 3. Triplet statistics for AX118 

The Pl3 formula has been calculated for Rp~I .  

PI3 Plo 
Positive Negative Positive Negative 

estimated triplets estimated triplets estimated triplets estimated triplets 

n n w  n n w  n n w  

3435 53 93 14 3794 17 
2672 24 14 1 2919 8 
1514 II 3 0 1547 l 
831 1 1 0 675 0 
425 0 l 0 276 0 

n n w  

131 19 
11 0 

1 0 

P3 
A R G  n (I qb[) (o) 

0.4 8000 50.5 
1.2 1409 38.8 
2.0 95 27.2 
3.2 
4.4 

Table 4. Triplet statistics for AZET 

The Pt3 formula has been calculated for Rp m I. 

P13 PIo 

Positive Negative Positive Negative 
estimated triplets estimated triplets estimated triplets estimated triplets 

n (1 q~l) (°) n (I qbl) (°) 
5708 44.4 87 87.6 
1972 35.5 9 121.2 
521 29.4 2 89.5 
l l l  25.4 
25 26.9 

n (l~l) (°) 
5373 40.3 
2341 32.0 

597 25.8 
67 22.3 
4 23.0 

n (l~l) (°) 
55 109.9 

1 122.0 

correlation coefficient 

p =  

((cos ~ r - ( c o s  ~r) ) [Dl(ARG)-  (D,(ARG))]) 
((cos ~or- (cos ~or))E)VZ((D,(ARG)-(D,(ARG)))2) 1/2' 

where cos ~r  is the true cosine of the triplet and 
DI(ARG) is the expected value of the triplet cosine 
according to P3, P~o and P l 3  (ARG = C, G and G" in 
the three cases). Accordingly, for each test structure 
three correlation factors P3, PlO and P13 are calcu- 
lated, which correspond to the Cochran, P~o and P13 

formulas, respectively (see Table 2). It is easily seen 
that: 

(1) PI3 is always larger than P3" The indications of 
Tables 3 and 4 are therefore confirmed. 

(2) plo is always much higher than P3. This cor- 
roborates the well documented higher efficiency of 
P~o with respect to the Cochran formula. 

(3) For low-symmetry space groups, (N~,R,) is very 
small; consequently, P l 3  does not provide a relevant 

improvement on P3 performance. We then decided to 
recalculate P13 after having increased the value of Ark 
and, as a consequence, the value of (N~,). The 
results are given in Table 5 and show that pl3 gen- 
erally increases even if for low-symmetry space 
groups (i.e. for BED) conditions (8), (10) or (12) are 
hardly satisfied. 

(4) In most cases, PI3 is significantly close to P~o. 
This correlation seems not to be random and sug- 
gests a supplementary algebraic and statistical analy- 
sis of the P13 formula. 

Algebraic and statistical analysis of the P13 formula 
P( ~3IRh,,...,Rh,(R,- D) 

If the Rp = I condition (8) is verified for any kRi, 
then the A ~,.i and B~,,; terms coincide with terms Aka 
and Bk,; in Plo. Thus, the present formulation 
encompasses the P10 formalism. However, some 
theoretical and practical drawbacks limit the useful- 
ness of the present theory. For example, as for P~o, 
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Table 5. Parameters Nk, (N~,R,) and p t3for the test 
s t r u c t u r e s  

The correlation coefficient has been calculated using the Pt3 
formula with Rp m I. 

Table 6. P13 triplet statbstics calculated ush~g only the 
contributions of  quadrupoles (15k) and (15l) 

AXll8  

Structure code Ark (N~R,) P~3 ARG 
AX118 150 185 0.556 0.4 
AZET 150 126 0.314 0.8 
BED ! 50 3 0.175 1.2 BOBBY 68 45 0.447 1.6 
CUIMID 150 24 0.344 2.0 DIAM 150 116 0.464 
DIOLE 150 129 0.233 AZET 
FEGAS 71 770 0.635 
INOS 150 44 0.440 

the prime to the summation warns the reader that 
precautions have to be taken in order to avoid 
duplications of contributions [i.e. if Rp is a symmetry 
operator of order two (Rp = R 71), then A [,,i and B~,,,. 
do not change when Ri is replaced by -R~Rp]. While 
duplications of contributions can be easily avoided 
for P l o ,  a computer program able to eliminate all of 
them in (20) is too time consuming even for a fast 
computer. Thus, (20) would be less efficient in prac- 
tice than theoretically expected. 

Let us now compare (17) with Pl0, with special 
attention to the comparison between Ak,i and A~,,; 
(Ak,  i and A [,,, influence the sign of c o s  ~ 3 ,  while Bk.; 
and B~,,; are only scaling factors). We note: 

(a) The t e r m  ekeh _kR,(Eh2+kR, ÷ ~h3+kR,) is both in 
Aka and in A~,., [the quadrupoles (15a) and (15b) are 
also in (3)] but is multiplied in A ~,,, by cos A. This is 
not a contradiction. Indeed, ,4 ~ 2rrn only if the 
reflection with vectorial index h I - k R i  is systema- 
tically absent - but in this case the term itself van- 
ishes. 

(b) If Ri is replaced by R i R ;  1 and  Rp is a symme- 
try operator of order two, then the term 
eke.h,Rp+kR(eh2_kR,Rp. ÷ Eh3_kR R ) [from quadrupoles 
(15g) and (15h)] is replaced by ekeh,+kR,(eh2-kRi+ 
eh3-kR), which is also included in Ak.i (this is not true 
if Rp is not a symmetry operator of order two). The 
fact that in A ~,,~ the term is multiplied by cos A is not 
a contradiction. In the section dedicated to algebraic 
considerations, we showed that, if R~ -~= Rp, then 
hlR? + kR~ is a special reflection with r/;~ 1. There- 
fore, '4 ~ 21rn only if the reflection with vectorial 
index hlRp + kR~ is a systematically absent reflection 

- but in this case the term itself vanishes. 
(c) For a fixed Rp, the t e r m  ¼(eh --2)~,(Rp_I)X 

(eh,a,+h~+eh,R,+h3) [from quadrupoles (15c) and 
(15d)] does not change with k. Consequently, its role 
in (17) is statistically irrelevant. In addition, it is 
based on special quadrupoles [see relationships (15)] 
involving Z1 relations that are unreliable for complex 
structures. An analogous conclusion holds for the 
t e r m  ¼(ek--2)eh,(R-l)(eh,R,+h2 ÷ Eh,R,+h3 ) arising from 
quadrupoles (15m) and (15n). 

Positive Negative 
estimated triplets estimated triplets 
n nw n nw 

3512 144 62 21 
2527 70 13 ll  
1338 23 2 0 
738 12 
400 6 

ARG 
0.4 
1.2 
2.0 
3.2 
4.4 

Positive Negative 
estimated triplets estimated triplets 
n (I qb]) (°) n (I q~l) (°) 

6435 47.7 17 96.0 
1805 39.2 4 139.2 
343 34.3 
56 29.5 

5 25.2 

(d) The t e r m  Ek[Eh,Rp+h2(F-.h3+kR ÷ eh3_KRiR ) ÷ 
eh.R_+h3(eh2+kR, + %-kR,S )] arising from quadrupoles 
(15l~, (15j), (15f) and (lge) is present in both A' and 
B'. When it is large, it contributes to make A' /N 
meaningful, but at the same time it makes B'/2N 
large so automatically reducing its own influence on 
(17). Generally, large values of this term are associ- 
ated with large variance values. This strange 
behaviour may be explained thus: while typical quad- 
rupoles strengthening q~3 involve triplets each of 
which contains hi, h2 or h3, quadrupoles (15e), (15f), 
(150 and (15j) do not satisfy this condition. They are 
based on two-phase seminvariants [for example, the 
sum of the last two triplets in the quadrupole (15e) is 
the two-phase seminvariant ~Oh,(Rp-- I ) - h  2 --  ~Oh 2 --  

2rrkR;Tp], which are unreliable for complex struc- 
tures. 

(e) The t e r m  Ek[eh2+kRf ih3-kR,Rp÷ Eh3+kRFh2-kRiR.]  
arising from quadrupoles (15k) and (15l) is not 
present in Ak,,.: it contains useful information supple- 
mentary to that provided by Plo. In particular, it is 
able to exploit quadrupoles of type (4) (not accessible 
to Pio) because it involves magnitudes contained in 
two different lines of (2). 

It should be worthwhile to calculate the role of the 
quadrupoles (15k) and (15/) in the P13 formula. We 
neglect in A~,.i all the terms but ea(e7elo + e8eg) and in 
B~.; all the terms but [el(eTelo + ese9) + e2(eae7 + eae8) 
+ e3(eae9 + eael0)]. The results for AXl l8  and AZET 
are shown in Table 6. We see that the simple use of 
the information contained in the quadrupole (4) is 
able to identify negative triplets and to efficiently 
rank the positive ones. The phase indications pro- 
vided by quadrupoles (15k) and (15l) agree well with 
those obtained through the complete PI3 formula 
(see Tables 3 and 4). We have combined the contri- 
butions from quadrupoles (15k) and (15l) with con- 
tributions from Plojust by adding the corresponding 
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numerators and respective denominators (terms can 
be considered as statistically independent). The cor- 
relation coefficient p has then been calculated for the 
test structures; it is shown in the last column of 
Table 2. It is seen that plo+ 13 is slightly better than 
plo but the improvement is not really significant. 

one can go with the embedding scheme? It is too 
early to conclude thus. 

The authors thank Miss C. Chiarella for technical 
support. 

Concluding remarks 

A probabilistic theory has been presented that is 
based on the representation of a given triplet phase 
by a family of special quintet phases. The informa- 
tion contained in the basis and in the cross terms of 
such quintets is used for estimating the triplet phase. 
The formulation is quite general and includes the 
well known Plo formula as a particular case. The 
final formula, called P13, proved more efficient than 
the Cochran (1955) formula; in particular, it is able, 
as well as Plo, to recognize negative triplets. A strong 
correlation has been found between Plo and Pl3, 
both from the theoretical point of view and in 
practical applications. The additional information 
exploited by Pi3 does not seem to be of sufficient 
quality for substantially improving the efficiency of 
P~o and, in addition, Pl3 is much more time consum- 
ing. Does this theory demonstrate the limits to which 
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Abstract 

An algorithm to calculate Wyckoff positions of n_ 
dimensional space groups is developed and a detailed 
theoretical background is supplied. The algorithm 
is based on concepts of symmetry support and of 
translational normalizer 

1. Introduction 

It has become attractive to view quasicrystals as ob- 
jects whose structure can be derived from a higher- 
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dimensional crystal. This approach is based on the fact 
that the bright spots occurring in a diffraction pattern 
of a quasicrystal can be indexed by a finite number n, 
n > 3, of integers and that the positions and intensities 
of Bragg peaks display a point symmetry forbidden in 
three-dimensional crystals. The corresponding Z-module 
of rank n, sometimes called Fourier module (Janssen, 
1991) of the related density function, can be interpreted 
as the reciprocal lattice of a certain n-dimensional lat- 
tice T, invariant under the symmetry group L of the 
diffraction pattern, where L is a representative of some 
Laue class. Usually, from L and from the statistical 

Acta Crystallographica Section A 
ISSN 0108-7673 © 1994 


